БізнесПрамысловасць

Вытворчасць сонечнай батарэі: тэхналогія і абсталяванне

Чалавецтва імкнецца перайсці на альтэрнатыўныя крыніцы электрычнага забеспячэння, якія дапамогуць захаваць чысціню навакольнага асяроддзя і скараціць выдаткі на выпрацоўку энергіі. Вытворчасць сонечнай батарэі з'яўляецца сучасным індустрыяльным метадам. Сістэма электразабеспячэння ўключае ў сябе прымачы сонечнага святла, акумулятары, якія кантралююць прылады, інвертары і іншыя прыборы, прызначаныя для пэўных функцый.

Сонечная батарэя з'яўляецца галоўным элементам, з якога пачынаецца назапашванне і пераўтварэнне энергіі прамянёў. У сучасным свеце для спажыўца пры выбары панэлі існуе шмат падводных камянёў, так як прамысловасць прапануе вялікая колькасць вырабаў, аб'яднаных пад адной назвай.

Крамянёвыя сонечныя батарэі

Гэтыя вырабы папулярныя ў сучасных спажыўцоў. У аснову іх вырабу пакладзены крэмній. Запасы яго ў нетрах шырока распаўсюджаныя, здабыча параўнальна недарагая. Крамянёвыя элементы выгадна адрозніваюцца узроўнем прадукцыйнасці ад іншых батарэй сонечнага святла.

віды элементаў

Вытворчасць сонечных батарэй з крэмнію вядзецца наступных тыпаў:

  • монакрышталічнага;
  • полікрышталічны;
  • аморфны.

Адрозніваюцца вышэйназваныя формы прылад тым, як кампануюцца крамянёвыя атамы ў крышталі. Асноўным адрозненнем элементаў становіцца розны паказчык каэфіцыента карыснага дзеяння пераўтварэнні светлавой энергіі, які ў двух першых відаў знаходзіцца прыблізна на адным узроўні і перавышае значэння ў прыбораў з аморфнага крэмнію.

Прамысловасць сённяшняга дня прапануе некалькі мадэляў сонечных уловителей святла. Адрозненне іх складаецца ў тым, якое прымяняецца абсталяванне для вытворчасці сонечных батарэй. Мае ролю тэхналогія вырабу і разнавіднасць пачатковага матэрыялу.

монакрышталічнага тып

Гэтыя элементы складаюцца з сіліконавых вочак, змацаваных паміж сабой. Па спосабе вучонага Чохральского вырабляецца абсалютна чысты крэмній, з якога вырабляюць монакрышталі. Наступным працэсам з'яўляецца разразанне застылага і зацвярдзелага паўфабрыката на пласціны таўшчынёй ад 250 да 300 мкм. Тонкія пласты насычаюць металічнай сеткай электродаў. Нягледзячы на дарагоўлю вытворчасці, такія элементы ўжываюць досыць шырока з-за высокага паказчыка пераўтварэння (17-22%).

Выраб полікрышталічнага элементаў

Тэхналогія вытворчасці сонечных батарэй з поликристаллов складаецца ў тым, што расплаўленая крэмніевыя маса паступова астуджаецца. Вытворчасць не патрабуе дарагога абсталявання, такім чынам, выдаткі на атрыманне крэмнія зніжаны. Полікрышталічнага сонечныя назапашвальнікі маюць меншы каэфіцыент эфектыўнасці (11-18%), у адрозненне ад монакрышталічнага. Гэта тлумачыцца тым, што ў працэсе астыванні маса крэмнія насычаецца драбнюткімі крупчастымі бурбалкамі, што прыводзіць да дадатковага праламлення прамянёў.

Элементы з аморфнага крэмнія

Вырабы адносяць да асаблівага тыпу, так як іх прыналежнасць да крамянёвых ўвазе зыходзіць ад наймення выкарыстоўванага матэрыялу, а вытворчасць сонечных батарэй выконваецца па тэхналогіі плёнкавых прыбораў. Крышталь у працэсе вырабу саступае месца крамянёвых вадароду або силону, тонкі пласт якіх пакрывае падкладку. Батарэі маюць самае нізкае значэнне эфектыўнасці, усяго да 6%. Элементы, нягледзячы на істотны недахоп, маюць шэраг бясспрэчных пераваг, якія даюць ім права стаяць у шэрагу з вышэйназванымі тыпамі:

  • значэнне паглынання оптыкі вышэй у два дзесяткі разоў, чым у монакрышталічнага і полікрышталічнага назапашвальнікаў;
  • мае мінімальную таўшчыню пласта, усяго 1 мкм;
  • Значная надвор'е не ўплывае на працу па пераўтварэнню святла, у адрозненне ад іншых відаў;
  • з-за высокага паказчыка трываласці на выгіб без праблем ужываецца ў цяжкіх месцах.

Тры вышэйапісаных выгляду сонечных пераўтваральнікаў дапаўняюцца гібрыднымі вырабамі з матэрыялаў з дваістымі ўласцівасцямі. Такія характарыстыкі дасягаюцца, калі ў аморфны крэмній ўключаюцца мікраэлементы або наначасціц. Атрыманы матэрыял падобны з полікрышталічнага крэмнія, але выгадна адрозніваецца ад яго новымі тэхнічнымі паказчыкамі.

Сыравіну для вытворчасці сонечных батарэй плёнкавага тыпу з CdTe

Выбар матэрыялу дыктуецца патрэбай у памяншэнні кошту вырабу і павышэнні тэхнічных характарыстык у працы. Найбольш часта ўжываецца светопоглощающий теллурид кадмію. У 70-я гады мінулага стагоддзя CdTe лічыўся асноўным прэтэндэнтам на касмічную выкарыстанне, у сучаснай прамысловасці ён знайшоў шырокае прымяненне ў энергетыцы сонечнага святла.

Гэты матэрыял адносяць да катэгорыі кумулятыўных ядаў, таму не суціхаюць спрэчкі па пытанні яго шкоднасці. Даследаванні навукоўцаў ўсталявалі той факт, што ўзровень шкоднага рэчыва, які паступае ў атмасферу, з'яўляецца дапушчальным і не наносіць шкоды экалогіі. Ўзровень ККД складае ўсяго 11%, але кошт ператваральнай электраэнергіі ад такіх элементаў ніжэй на 20-30%, чым ад прыбораў крамянёвага выгляду.

Назапашвальнікі прамянёў з селену, медзі і індыю

Паўправаднікамі ў прыборы служаць медзь, селен і індый, часам дапускаецца замяшчэнне апошняга на галій. Гэта тлумачыцца высокай запатрабаванасцю індыя для вытворчасці манітораў плоскага тыпу. Таму абраны гэты варыянт замяшчэння, бо матэрыялы маюць падобныя ўласцівасці. Але для паказчыка ККД замена адыгрывае істотную ролю, вытворчасць сонечнай батарэі без Галіі павышае эфектыўнасць працы прылады на 14%.

Сонечныя уловители на палімернай аснове

Гэтыя элементы адносяць да маладых тэхналогіях, так як яны нядаўна з'явіліся на рынку. Паўправаднікі з арганікі паглынаюць святло для пераўтварэння яго ў электрычную энергію. Для вытворчасці ўжываюць Фуллер вугляроднай групы, полифенилен, медзі фталоцианин і інш. У выніку атрымліваюць тонкія (100 нм) і гнуткія плёнкі, якія ў працы выдаюць каэфіцыент эфектыўнасці 5-7%. Велічыня невялікая, але вытворчасць гнуткіх сонечных батарэй мае некалькі станоўчых момантаў:

  • для вырабу ня затрачваюцца вялікія сродкі;
  • магчымасць ўстаноўкі гнуткіх батарэй ў месцах выгібаў, дзе эластычнасць мае першачарговае значэнне;
  • параўнальная лёгкасць і даступнасць ўстаноўкі;
  • гнуткія батарэі не аказваюць шкоднага ўздзеяння на навакольнае асяроддзе.

Хімічнае тручэнне ў працэсе вытворчасці

Самай дарогай у сонечнай батарэі з'яўляецца мультикристаллическая або монакрышталічнага пласціна з крэмнію. Для максімальна рацыянальнага выкарыстання крэмнія рэжуць псевдоквадратные фігуры, гэтая ж форма дазваляе шчыльна абкласці пласціны ў будучыні модулі. Пасля працэсу рэзкі на паверхні застаюцца мікраскапічныя пласты парушанай паверхні, якія прыбіраюцца пры дапамозе тручэння і тэкстуравання, каб палепшыць прыём падальных прамянёў.

Апрацаваная падобным спосабам паверхню ўяўляе сабой хаатычна размешчаныя микропирамиды, адлюстроўваючыся ад грані якіх, святло трапляе на бакавыя паверхні іншых выступаў. Працэдура рыхлення тэкстуры паніжае якая адлюстроўвае здольнасць матэрыялу прыблізна на 25%. У працэсе тручэння ўжываюць серыю кіслотных і шчолачных апрацовак, але недапушчальна моцна памяншаць таўшчыню пласта, так як пласціна не вытрымлівае наступныя апрацоўкі.

Паўправаднікі ў сонечных батарэях

Тэхналогія вытворчасці сонечных батарэй мяркуе, што асноўным паняццем цвёрдай электронікі з'яўляецца pn-пераход. Калі ў адной пласціне сумясціць электронную праводнасць n-тыпу і дзіркавы праводнасць p-тыпу, то ў месцы судотыку іх узнікае pn-пераход. Асноўным фізічным уласцівасцю названага вызначэння становіцца магчымасць служыць бар'ерам і прапускаць электрычнасць ў адным кірунку. Менавіта такі эфект дазваляе наладзіць паўнавартасную працу сонечных элементаў.

У выніку правядзення фосфарнай дыфузіі на тарцах пласціны складваецца пласт n-тыпу, які грунтуецца ў паверхні элемента на глыбіні ўсяго 0,5 мкм. Вытворчасць сонечнай батарэі прадугледжвае неглыбокае пранікненне носьбітаў процілеглых знакаў, якія ўзнікаюць пад дзеяннем святла. Іх шлях у зону ўплыву pn-пераходу павінен быць кароткім, інакш яны могуць пры сустрэчы пагасіць адзін другога, пры гэтым не згенераваць ніякага колькасці электрычнасці.

Выкарыстанне плазмохимического тручэння

У канструкцыі сонечнай батарэі прадугледжаны вонкавай паверхні з усталяванай кратамі для здымкі току і тыльны бок, якая ўяўляе сабой суцэльны кантакт. Падчас з'явы дыфузіі ўзнікае электрычнае замыканне паміж дзвюма плоскасцямі і перадаецца на тарэц.

Каб выдаліць замыканне, прымяняецца абсталяванне для сонечных батарэй, якое дазваляе зрабіць гэта з дапамогай плазмохимического, хімічнага тручэння або механічным, лазерным шляхам. Часта выкарыстоўваецца метад плазмохимического ўздзеяння. Тручэнне выконваецца адначасова для чаркі складзеных разам пласцін крэмнію. Зыход працэсу залежыць ад працягласці апрацоўкі, складу сродкі, памеру квадратаў матэрыялу, кірункі бруй іённага патоку і іншых фактараў.

Нанясенне антиотражающего пакрыцця

Пры дапамозе нанясення тэкстуры на паверхні элемента зніжаецца адлюстраванне да 11%. Гэта пазначае, што дзясятая частка прамянёў папросту адлюстроўваецца ад паверхні і не прымае ўдзелу ў адукацыі электрычнасці. З мэтай памяншэння такіх страт на адным баку элемента наносяць пакрыццё з глыбокім пранікненнем светлавых імпульсаў, ня якое адлюстроўвае іх назад. Навукоўцы, беручы пад увагу законы оптыкі, вызначаюць склад і таўшчыню пласта, таму вытворчасць і ўстаноўка сонечных батарэй з такім пакрыццём памяншаюць адлюстраванне да 2%.

Кантактная металізацыя з асабовага боку

Паверхню элемента прызначана для паглынання найбольшай колькасці выпраменьвання, менавіта гэтым патрабаваннем вызначаюцца размерные і тэхнічныя характарыстыкі якая наносіцца металічнай сеткі. Выбіраючы дызайн асабовага боку, інжынеры вырашаюць дзве супрацьлеглыя праблемы. Зніжэнне аптычных страт адбываецца пры больш тонкіх лініях і размяшчэнні іх на вялікай адлегласці адна ад іншай. Вытворчасць сонечнай батарэі з павялічанымі памерамі сеткі прыводзіць да таго, што частка зарадаў не паспявае дасягнуць кантакту і губляецца.

Таму навукоўцамі стандартызавана значэнне адлегласці і таўшчыні лініі для кожнага металу. Занадта тонкія палоскі адкрываюць прастору на паверхні элемента для паглынання прамянёў, але не праводзяць моцны ток. Сучасныя метады нанясення металізацыі складаюцца ў трафарэтных друкаванні. У якасці матэрыялу найбольш апраўдвае сябе серебросодержащая паста. За кошт яе прымянення ККД элемента падымаецца на 15-17%.

Металізацыя на тыльным баку прыбора

Нанясенне металу на тыльны бок прылады адбываецца па двух схемам, кожная з якіх выконвае ўласную працу. Суцэльным тонкім пластом па ўсёй паверхні, акрамя асобных адтулін, напыляют алюміній, а адтуліны запаўняюць серебросодержащей пастай, якая грае кантактную ролю. Суцэльны алюмініевы пласт служыць своеасаблівым люстраным прыладай з тыльнага боку для свабодных зарадаў, якія могуць згубіцца ў абадраных крышталічных сувязях кратаў. З такім пакрыццём на 2% больш у магутнасці працуюць сонечныя батарэі. Водгукі спажыўцоў кажуць, што такія элементы больш даўгавечныя і не так моцна залежаць ад пахмурнага надвор'я.

Выраб сонечных батарэй сваімі рукамі

Крыніцы харчавання ад сонца не кожны можа замовіць і ўсталяваць у сябе дома, бо іх кошт на сённяшні дзень досыць вялікая. Таму многія майстры і ўмельцы асвойваюць вытворчасць сонечных батарэй дома.

Набыць камплекты фотаэлементаў для самастойнай зборкі можна ў інтэрнэце на розных сайтах. Кошт іх залежыць ад колькасці якія ўжываюцца пласцін і магутнасці. Напрыклад, невялікі магутнасці камплекты, ад 63 да 76 Вт з 36 пласцінамі, каштуюць 2350-2560 руб. адпаведна. Тут жа набываюць працоўныя элементы, адбракаваныя з вытворчых ліній па якіх-небудзь прычынах.

Пры выбары тыпу фотаэлектрычнага пераўтваральніка прымаюць пад увагу той факт, што полікрышталічнага элементы больш устойлівыя да пахмурнага надвор'і і працуюць пры ёй больш эфектыўна монакрышталічнага, але маюць меншы тэрмін службы. Монакрышталічнага валодаюць больш высокім ККД у сонечнае надвор'е, і праслужаць яны значна даўжэй.

Каб арганізаваць вытворчасць сонечных батарэй ў хатніх умовах, трэба падлічыць агульную нагрузку ўсіх прыбораў, якія будуць харчавацца ад будучага пераўтваральніка, і вызначыцца з магутнасцю прылады. Адсюль выцякае колькасць фотаэлементаў, пры гэтым ўлічваюць кут нахілу панэлі. Некаторыя майстры прадугледжваюць магчымасць змены становішча назапашвальнай плоскасці ў залежнасці ад вышыні сонцастаяння, а зімой - ад таўшчыні выпаў снегу.

Для вырабу корпуса ўжываюць розныя матэрыялы. Часцей за ўсё ставяць алюмініевыя або нержавеючыя куткі, выкарыстоўваюць фанеру, ДСП і інш. Празрыстая частка выконваецца з арганічнага або звычайнага шкла. У продажы ёсць фотаэлементы з ужо прыпаянымі праваднікамі, такія купляць пераважней, так як спрашчаецца задача зборкі. Пласціны ня складаюць адну на іншую - ніжнія могуць даць мікротрэшчыны. Прыпой і флюс наносяцца папярэдне. Літаваць элементы зручней, размясціўшы іх адразу на рабочай баку. У канцы крайнія пласціны прыварваюць да шын (больш шырокім праваднікам), пасля гэтага выводзяць "мінус" і "плюс".

Пасля праведзенай работы тэстуюць панэль і герметызуюць. Замежныя майстры для гэтага выкарыстоўваюць компаунды, але для нашых умельцаў яны стаяць даволі дорага. Самаробныя пераўтваральнікі герметызуюць сіліконам, а тыльны бок пакрываюць лакам на аснове акрылу.

У заключэнне варта сказаць, што водгукі майстроў, якія зрабілі сонечныя батарэі сваімі рукамі, заўсёды станоўчыя. Аднойчы выдаткаваўшы сродкі на выраб і ўстаноўку пераўтваральніка, сям'я вельмі хутка іх акупляе і пачынае эканоміць, выкарыстоўваючы бясплатную энергію.

Similar articles

 

 

 

 

Trending Now

 

 

 

 

Newest

Copyright © 2018 be.unansea.com. Theme powered by WordPress.